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Purpose: The purpose of the present study is to validate the designed model of the 

smart health-oriented product–service system of the Social Security Organization 

based on cognitive factors. 

Methodology: This research was conducted using a mixed-methods approach. In 

the qualitative section, content analysis of previous studies and semi-structured 

interviews with 12 managers and experts in the fields of health and information 

technology were carried out. The qualitative data were analyzed using the thematic 

analysis method. In the quantitative section, 120 employees of the Social Security 

Organization were selected through stratified random sampling, and they completed 

a researcher-made questionnaire. The reliability of the questionnaire was confirmed 

using Cronbach’s alpha (0.92), and the data were analyzed with SPSS and SmartPLS 

software at both descriptive and inferential levels. 

Findings: The findings indicated that the smart health-oriented product–service 

system consists of four main dimensions: business model, software (cloud) platform, 

cognitive and biological factors, and physical platform. Confirmatory factor analysis 

confirmed factor loadings higher than 0.50 for all indicators. Correlation coefficients 

among the dimensions indicated positive and significant relationships. The results 

of the significance test (t > 1.96, p < 0.05) confirmed the study hypotheses. The GOF 

index was reported as 0.70, indicating a strong model fit. 

Conclusion: The results of the study showed that alignment among the four 

dimensions of the model is essential for the effective design and implementation of 

the health-oriented product–service system. This model can enhance the quality of 

health services, improve the experience of the elderly, increase satisfaction, and 

reduce healthcare costs in social security organizations. 
Keywords: Smart product–service system, elderly, insurance system, cognitive factors, 

structural equation modeling 
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1. Introduction 

opulation aging, the rising prevalence of chronic and 

multi-morbidity conditions, and the fiscal pressures on 

social protection systems are converging to make the design 

of scalable, trustworthy, and outcomes-oriented digital 

health services an urgent research and policy priority. Smart 

Product–Service Systems (Smart PSS) offer a promising 

sociotechnical paradigm for meeting this challenge by 

integrating data-driven products, cloud-based platforms, and 

coordinated human services into continuous, adaptive care 

journeys (Zheng et al., 2019). Recent developments toward 

“Smart PSS 2.0” emphasize not only cyber-physical 

connectivity and analytics but also service ecosystem 

orchestration, human-centered design, and governance 

mechanisms that align technological affordances with 

stakeholder values and risks (Ren & Zheng, 2024). In the 

specific context of social security organizations—which 

simultaneously function as payers, providers, and 

regulators—the design of a smart, health-oriented PSS 

requires the additional lens of cognitive factors: how older 

adults perceive, learn, decide, and adhere; how clinicians 

interpret and act on information; and how managers architect 

platforms that are intelligible, equitable, and resilient at scale 

(Hasanvayi, 2021). 

Technological enablers for healthcare 4.0—Internet of 

Things (IoT), big data pipelines, and elastic cloud 

computing—are increasingly mature, enabling longitudinal, 

multimodal monitoring and service personalization for 

community-dwelling older adults (Aceto et al., 2020). Yet 

technological capability alone does not guarantee adoption 

or benefit. Experience during and after the COVID-19 era 

revealed both the rapid scalability and the fragilities of 

telehealth deployments, especially for populations with 

varied digital literacy and access constraints (Barney et al., 

2020; Pierce et al., 2021). Evidence from health systems and 

international settings underscores that sustained use depends 

on perceived value, clear communication of risk, and reliable 

service integration across touchpoints (Cao et al., 2023; 

Negash & Calahorrano Sarmiento, 2023). For organizations 

charged with stewardship of pooled funds and 

intergenerational solidarity—such as pension and social 

insurance institutions—these lessons intersect with macro-

level financing realities and legacy infrastructure constraints 

(Bozrafkan & Ghomari, 2019). Consequently, a robust 

model for a smart, health-oriented PSS in such organizations 

must simultaneously specify the business architecture, 

software/cloud platform, physical delivery infrastructure, 

and the cognitive–biological layer that anchors clinical 

sense-making and user experience. 

The cognitive layer is pivotal. Cognitive decline, 

executive dysfunction, and fluctuating attention or memory 

burden can shape how older adults interpret 

recommendations, interact with interfaces, and comply with 

therapy—making cognitive screening and cognitive-tailored 

design essential. Health systems have begun 

operationalizing brief screeners such as the PROMIS 

Cognitive Function tools in routine encounters, revealing 

that framing items as “abilities” versus “concerns” alters 

engagement and reporting—an insight with direct 

implications for PSS interface copy, nudging strategies, and 

feedback loops (Harrison et al., 2024). Complementarily, 

immersive and assistive technologies designed with older 

adults who have cognitive disorders demonstrate that 

empathetic, user-centered design can augment engagement, 

learning, and well-being when curated to sensory load, 

pacing, and meaningful context (Yi et al., 2024). 

Knowledge-representation approaches—e.g., knowledge 

graphs that encode diseases, medications, activities, and 

preferences—offer computational scaffolding for 

individualized care planning and explainable 

recommendations in chronic geriatric care (Li et al., 2024). 

Together, these developments argue that the “intelligence” 

in Smart PSS should be operationalized not merely as 

algorithmic performance but as cognitively congruent 

service choreography. 

Design-process research corroborates this stance: 

modeling the cognitive processes of PSS design teams shows 

how representational formats and protocol structures shape 

solution quality and traceability, underscoring the need to 

make cognitive work visible and to support reflective 

iteration (Sakao et al., 2020). In product–service value 

discovery, methods such as graphics-based rough-fuzzy 

DEMATEL have been advanced to surface 

interdependencies among value propositions, stakeholder 

risks, and operational levers—useful when translating 

clinical pathways into modular service bundles for 

heterogeneous older-adult segments (Chen et al., 2020). At 

the front end, systematic reviews of consumers’ cognitive–

affective needs in product design provide taxonomies that 

can be repurposed to calibrate tone, control granularity, and 

feedback cadence in digital health interfaces (Tavares et al., 

2021). Human-centered methodologies tailored to connected 

health emphasize phased, iterative cycles that blend usability 

engineering with user-experience ethnography, reducing 

friction in onboarding, adherence, and escalation processes 

P 
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(Harte et al., 2017). The persistent “cognitive challenge” of 

healthcare information systems—where sense-making is 

distributed across patients, caregivers, and clinicians—

further motivates explicit alignment between interface 

semantics, alert logic, and clinical cognition (Lintern & 

Motavalli, 2018). 

From the ecosystem vantage point, Smart PSS adoption 

in healthcare is catalyzed by intelligent connected products 

that communicate effectively with stakeholders—patients, 

clinicians, payers, and regulators—so that expectations, 

accountabilities, and data rights are transparent (Negash & 

Calahorrano Sarmiento, 2023). This communication layer is 

inseparable from trust, safety, and liability considerations in 

telemedicine; stakeholders require clarity on decision 

support boundaries, fallback procedures, and accountability 

attribution when socio-technical systems fail or drift 

(Parimbelli et al., 2018). Digital health’s maturation can 

therefore be understood as a cultural transformation in which 

norms of agency, evidence, and partnership are renegotiated 

across institutions and professions (Meskó et al., 2017). 

Readiness assessments among operational leaders 

consistently show capability gaps in data governance, 

workforce upskilling, and cross-unit coordination, which 

must be addressed for Smart PSS to move from pilots to 

platform programs (Steenkamp, 2025). At the same time, 

mobile health programs targeted to older adults—

particularly in middle-income settings—demonstrate 

tangible health gains when services are embedded in local 

care pathways and tuned to cultural practices (Safdari et al., 

2017). These findings resonate with broader Industry 4.0 

integrations in healthcare, where cloud and big-data 

backbones unlock analytics-enabled service innovation 

while introducing new dependencies on interoperability, 

cybersecurity, and lifecycle management (Aceto et al., 

2020). 

The business architecture of a social-security–anchored 

Smart PSS must reflect a multiparty value network. 

Providers (public hospitals, primary care, pharmacies, 

home-care agencies), platform firms (cloud infrastructure, 

analytics, identity and payment rails), and complementary 

innovators (wearables, assistive robotics, serious games) 

jointly co-produce outcomes that are experienced by older 

adults and caregivers in the home, community, clinic, and 

virtual spaces. Empirical work shows that telemedicine for 

adolescents and young adults scaled rapidly under pandemic 

exigencies through workflow redesign and policy 

flexibility—lessons transferable to geriatric contexts when 

coupled with accessibility and cognitive accommodations 

(Barney et al., 2020). Regionally, Latin American 

experiences underscore the interplay of regulation, 

infrastructure heterogeneity, and provider training in 

sustaining telehealth quality and equity (Pierce et al., 2021). 

Ethical frameworks drawn from adjacent service domains 

(e.g., Islamic banking’s convergence marketing and ethics) 

can also inform trust-by-design principles for stakeholder 

communication, consent, and fair value exchange in 

culturally diverse beneficiary pools (Suandi et al., 2022). 

Within sport and performance settings, the emergence of 

referral networks and shared-care protocols for mental 

health illustrates how standardized pathways, triage criteria, 

and role clarity can improve continuity and outcomes in 

distributed service systems—design logics that Smart PSS 

for elderly care can adapt for cognitive screening, 

psychosocial support, and escalation (Pilkington et al., 

2025). Likewise, advances in biomechanical biosensors and 

media communication technologies suggest new modalities 

for unobtrusive monitoring and behavior-change messaging 

at population scale, provided concerns about noise, bias, and 

equity are proactively managed (Wang, 2025). 

Operationalizing such an ecosystem demands rigorous 

modeling of constructs and relationships so that platform 

decisions (e.g., personalization rules, escalation thresholds, 

incentive schemes) are empirically grounded. The proposed 

study therefore adopts a hierarchical, reflective 

measurement perspective appropriate for layered Smart PSS 

architectures and evaluates the model using partial least 

squares (PLS) path modeling, following guidelines for 

higher-order constructs in information systems research 

(Wetzels et al., 2009). Convergent and discriminant validity 

are assessed using accepted criteria—composite reliability, 

average variance extracted (AVE), and cross-

loading/square-root-of-AVE diagnostics—recognized as 

state-of-the-art for latent variable evaluation (Fornell & 

Larcker, 1981). This methodological stance aligns with the 

transdisciplinary character of Smart PSS, in which 

constructs span business model logics, platform affordances, 

clinical processes, and cognitive–behavioral determinants 

(Ren & Zheng, 2024; Zheng et al., 2019). It also 

complements value-proposition elicitation techniques and 

protocol-analysis insights from PSS design research, helping 

to map how cognitive factors and stakeholder roles 

materialize as measurable indicators (Chen et al., 2020; 

Sakao et al., 2020). 

Within the “software (cloud) platform” dimension, 

modular microservices for identity, consent, data 

integration, analytics, and feedback management are no 
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longer optional; they are the substrate for secure 

interoperability with government e-prescription systems, 

payer authorization rails, and pharmacy fulfillment 

networks. Cloud elasticity supports bursty workloads (e.g., 

telemetry spikes during heatwaves) and continuous learning 

from federated data, while big-data pipelines enable both 

population-level risk stratification and individual-level just-

in-time interventions (Aceto et al., 2020). The “physical 

platform” dimension anchors the last mile: wearables, 

ambient sensors, connected drug-dispensing, and 

telepresence/robotic assist devices that make care tangible 

and equitable across urban and rural settings. Importantly, 

the “business model” dimension clarifies financing 

arrangements (subscriptions, bundled payments, outcome-

based incentives), role allocations, and investment logic for 

scaling to national social insurance populations. Finally, the 

“cognitive and biological” dimension binds clinical signal to 

service action: from PROMIS-based cognitive function 

screeners embedded in annual wellness encounters 

(Harrison et al., 2024), to knowledge-graph–driven decision 

support that contextualizes polypharmacy and comorbidity 

(Li et al., 2024), to immersive or gamified micro-

interventions that boost engagement among older adults with 

cognitive disorders (Yi et al., 2024). 

A growing review literature specific to smart, health-

oriented PSS for the elderly consolidates these strands, 

proposing component sets and indicators that social security 

organizations can tailor to their mandates and beneficiary 

needs (Hasanvayi Atashgah et al., 2024). Digital health as 

cultural transformation cautions that implementation is not a 

linear technology rollout but a negotiated change in roles, 

rituals, and accountabilities—hence the salience of co-

creation with users and frontline staff (Meskó et al., 2017). 

Human-centered, three-phase methodologies for connected 

health provide pragmatic scaffolds for integrating usability, 

human factors, and experience mapping into platform build-

outs (Harte et al., 2017). Consumer neuroergonomics 

highlights that cognitive load, affect, and meaning-making 

must be designed for—not discovered by accident—if smart 

services are to become habit-forming supports rather than 

transient novelties (Tavares et al., 2021). Moreover, 

governance mechanisms that foreground risk 

communication, safety cases, and liability allocation are 

indispensable to sustaining trust in tele-mediated care 

(Parimbelli et al., 2018). All of this must be orchestrated 

within the institutional realities of social insurance, where 

benefit design, provider contracts, and actuarial 

sustainability intersect with the adoption curve of new 

technologies (Bozrafkan & Ghomari, 2019). 

Against this backdrop, the present study has three aims. 

First, it synthesizes the literature on Smart PSS, telehealth, 

and cognitive informatics to articulate a four-dimension 

model tailored to social security organizations: business 

model, software (cloud) platform, physical platform, and 

cognitive & biological factors (Aceto et al., 2020; Lintern & 

Motavalli, 2018; Ren & Zheng, 2024; Zheng et al., 2019). 

Second, it operationalizes each dimension with measurable 

indicators derived from prior reviews, design-method 

studies, and readiness surveys, paying particular attention to 

cognitive screening, knowledge-graph–based decision 

support, and immersive engagement modalities (Chen et al., 

2020; Hasanvayi Atashgah et al., 2024; Li et al., 2024; 

Steenkamp, 2025; Yi et al., 2024). Third, it validates the 

measurement and structural model using PLS, establishing 

convergent/discriminant validity and estimating the 

directional effects among dimensions and their 

manifestations in a representative social-security context 

(Fornell & Larcker, 1981; Wetzels et al., 2009). In doing so, 

we leverage post-pandemic telehealth lessons (Barney et al., 

2020; Pierce et al., 2021), adoption drivers from smart health 

and elderly-care systems (Cao et al., 2023; Negash & 

Calahorrano Sarmiento, 2023), ethical and communication 

insights from adjacent service systems (Suandi et al., 2022), 

and design/process guidance from human-centered and 

cognitive engineering traditions (Harte et al., 2017; Sakao et 

al., 2020; Tavares et al., 2021). We also consider frontier 

modalities—biosensors and media communication 

technologies for psychological health support (Wang, 2025) 

and networked referral pathways (Pilkington et al., 2025)—

as exemplars of services that a mature Smart PSS can 

incorporate. 

In sum, Smart PSS for social security organizations must 

be conceived as a layered, cognitively informed, and 

ethically governed ecosystem. Cloud-enabled connectivity 

and analytics provide the substrate; human-centered 

methods and cognitive science convert capability into 

usability and adherence; business model clarity aligns 

incentives; and governance constructs sustain trust over 

time. This, this study aimed to validate the designed model 

of the smart health-oriented product–service system of the 

Social Security Organization based on cognitive factors. 

https://portal.issn.org/resource/ISSN/2645-3460


Saei et al.                                                                                                                                         Iranian Journal of Educational Sociology 8:4 (2025) 1-14 

 

 5 
E-ISSN: 2645-3460 
 

2. Methods and Materials 

This research, in terms of approach, is a mixed-methods 

study that aims to validate the model of the smart health-

oriented product–service system of social security 

organizations based on cognitive factors. Furthermore, in 

terms of purpose, the present research is applied and has 

been conducted in an exploratory manner. For data 

collection in the qualitative section, semi-structured 

interviews were used, and in the quantitative section, a 

researcher-made questionnaire was employed for this 

purpose. The sampling method in the qualitative step of the 

research was purposive sampling. Purposive sampling is a 

method used in qualitative research, particularly when expert 

samples are required. 

To measure the reliability of the questionnaire 

instrument, Cronbach’s alpha was used, and the overall 

coefficient was calculated as 92%. In this study, content 

analysis of previous studies regarding the smart health-

oriented product–service system and interviews with 12 

managers and experts in the field were carried out. Based on 

the thematic analysis of the interviews, the components and 

indicators of the smart health-oriented product–service 

system were identified. In the quantitative section, to 

validate the model, the participants were employees of the 

social security organizations. Using stratified random 

sampling and Cochran’s formula, 120 individuals were 

selected, and the research questionnaire was administered. 

Analysis of the collected data in the qualitative part was 

performed using qualitative content analysis, and in the 

quantitative part through both descriptive and inferential 

statistics using SPSS and SmartPLS software. 

3. Findings and Results 

Based on the review of the literature and the interviews 

conducted, the components and indicators of the smart 

health-oriented product–service system were 

comprehensively identified (considering all models and 

perspectives raised in this field) and presented in Table 1. It 

should be noted that the system components consist of four 

dimensions: business model, software (cloud) platform, 

cognitive and biological factors, and physical platform. Each 

of these dimensions consists of multiple components and 

parameters. 

Table 1 

Dimensions and Components of the Cognitive Factors–Based Smart Health-Oriented Product–Service System of Social Security 

Organizations 

Dimensions System Components Indicators and Parameters 

Business Model Service and product 

providers 

Hospitals; Medical sciences universities; Urban and rural health centers; Supportive insurance 

organizations; Pharmaceutical knowledge-based companies; Medical equipment knowledge-based 

companies; Health services startups; Pharmacies; Elderly care centers  

Customers Elderly; Patients and disabled individuals  

Suppliers and logistics Emergency agents; Delivery providers; Medical equipment stores  

Revenue–cost flow Financing and investment in the health sector; Hardware costs for implementation and system 

management; Software costs for implementation and system management; Pricing of services and 

products; System revenue flow (subscription, product–service sales)  

Services Treatment; Online and in-person medical care and consultation; Other services  

Products Medicine; Health-oriented organic products (nutraceuticals); Medical equipment 

Software 

(Cloud) Platform 

Cloud infrastructure and 

servers 

Based on information technology and digitalization; Authentication tools; Technical support 

(computing, user database and supply chain, messaging); Big data analysis; Online shop for 
pharmaceutical and health-oriented products; Smart insurance contracts for the elderly  

Linkage to public–

government systems 

“My Government” portal; National electronic prescription system; Company and institution validation 

systems; Online payment gateways  

Network and 

communications 

Wired communication (phone calls, sensors); Wireless communication (RFID, Bluetooth, Wi-Fi, 

internet-based mobile communication technologies, software, and other similar technologies)  

Personalization and 

feedback 

Advanced, intermediate, and easy usability modes; Service–product co-creation and sharing tools; User 

feedback systems (relative rating, user participation in services)  

Experience management 

and user interface 

(UI/UX) 

User input devices (e.g., biosensors); User movement recognition; User experience mapping and 

evaluation; Gamification (for an engaging and entertaining environment); Use of augmented reality 

technology  

Legal and educational 

guidelines 

Privacy standards and regulations; National laws regarding the elderly and disabled; A module to 

explain how users can employ the smart system and its components; Health-related media, resources, 

and articles 
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Cognitive and 

Biological 
Factors 

Clinical monitoring Intelligent assistant for monitoring biological data (nutrition, blood sugar, blood pressure, 

electrocardiogram, heart rate, oxygen saturation, height, weight, activity and mobility, rest, body 
temperature, fat percentage, etc.)  

Cognitive monitoring Artificial intelligence simulation of elderly behavior and psychological preferences; Extraction and 

analysis of elderly emotional needs for new service–product design and improvement of existing ones; 

Examination of personality, analytical and creative thinking; Assessment of stress, happiness, and 

depression; Cognitive skills training through gamification  

Medication management Intelligent assistant for medication scheduling 

Physical 

Platform 

Physical infrastructure On-site user needs; Service and product delivery infrastructure; Digital physical devices and objects 

(e.g., wearable devices); Non-digital physical devices and objects; Remote surgery with intelligent 

medical robots 

In this section, confirmatory factor analysis of the present 

research was conducted. In the second part, PLS software 

was used for structural analysis, hypothesis testing, and 

correlation testing. Validity and reliability are essential 

characteristics for the effectiveness of data collection 

methods. There are multiple methods for determining the 

validity of measurement tools, and in this study, due to 

existing limitations, content (face) validity was used for 

validation. Accordingly, several questionnaires were 

distributed among university professors, and after applying 

the proposed modifications, the face validity of the 

questionnaire was confirmed. 

In addition, for assessing the validity and reliability of the 

questionnaire, Cronbach’s alpha and confirmatory factor 

analysis criteria were employed. To test the reliability of the 

research questionnaire, Cronbach’s alpha test was used. For 

this purpose, initially, 10 questionnaires were prepared and 

distributed among the statistical population. After collecting 

the questionnaires, SPSS software was used to calculate 

Cronbach’s alpha coefficient for the entire questionnaire and 

each of its dimensions. If the Cronbach’s alpha coefficient 

of a questionnaire is higher than 0.70, it indicates acceptable 

reliability. All variables demonstrated Cronbach’s alpha 

values greater than 0.70. 

Table 2 shows the correlation of latent variables in the 

PLS algorithm calculations. According to these coefficients, 

all five main criteria had high correlations with the main 

variable and with each other. In other words, an increase in 

one variable would lead to an increase in another, and a 

decrease in one would result in a decrease in another. 

Table 2 

Correlation of Latent Variables in the PLS Algorithm 

Variable SPSS A B C D 

Smart Health-Oriented Product–Service System 1.000 0.832 0.874 0.458 0.622 

A_Business Model 0.832 1.000 0.791 0.796 0.530 

B_Physical Platform 0.874 0.791 1.000 0.445 0.612 

C_Software Platform 0.458 0.796 0.445 1.000 0.583 

D_Cognitive and Biological Factors 0.622 0.530 0.612 0.583 1.000 

 

Confirmatory factor analysis, in this context, illustrates 

the relationships between items (questionnaire questions) 

and factors (latent variables). In addition to factor loadings, 

validity criteria (AVE, Cronbach’s alpha, composite 

reliability, rho_A), and coefficients of determination (R²) 

were calculated in this analysis. A factor loading is a 

numerical value that determines the strength of the 

relationship between a latent variable and its corresponding 

observed variable in the path analysis process. The higher 

the factor loading of an indicator in relation to a specific 

construct, the greater the share of that indicator in explaining 

the construct. If the factor loading of an indicator is negative, 

it indicates its negative contribution in explaining the related 

construct; in other words, the question corresponding to that 

indicator is designed in reverse. The strength of the 

relationship between a factor (latent variable) and the 

observable variable is demonstrated by the factor loading. 

Factor loadings range between zero and one. If the factor 

loading is less than 0.40, the relationship is considered weak 

and is disregarded. A loading between 0.40 and 0.60 is 

acceptable, and if greater than 0.60, it is highly desirable. 

The factor loading of all items exceeded the minimum 
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threshold of 0.50. Therefore, the strength of the relationship 

between each latent variable and its corresponding observed 

variable was at a desirable level. 

Reliability is assessed through factor loadings, 

Cronbach’s alpha, average variance extracted, and 

composite reliability. To evaluate measurement indicators 

and model validity, average variance extracted (AVE), 

composite reliability, and Cronbach’s alpha were used. The 

results of reliability and convergent validity of the model are 

fully presented in Table 3 and discussed below. 

 

 

Table 3 

Reliability Results 

Variable Cronbach’s Alpha rho_A Composite Reliability AVE 

Smart Health-Oriented Product–Service System 0.978 0.979 0.979 0.502 

A_Business Model 0.947 0.954 0.953 0.525 

B_Physical Platform 0.878 0.881 0.911 0.672 

C_Software Platform (Cloud) 0.925 0.935 0.935 0.508 

D_Cognitive and Biological Factors 0.931 0.934 0.941 0.573 

Service and Product Providers 0.822 0.846 0.894 0.738 

Clinical Monitoring 0.742 0.747 0.853 0.659 

Suppliers and Logistics 0.820 0.826 0.893 0.737 

Revenue–Cost Flow 0.860 0.863 0.915 0.782 

Services 0.754 0.760 0.845 0.579 

Cognitive Monitoring 0.856 0.863 0.898 0.638 

Cloud Infrastructure and Servers 0.776 0.788 0.868 0.687 

Network and Communications 0.847 0.736 0.803 0.513 

Personalization and Feedback 0.822 0.844 0.882 0.654 

Legal and Educational Guidelines 1.000 1.000 1.000 1.000 

Products 0.722 0.773 0.841 0.641 

Experience Management and User Interface (UI/UX) 0.756 0.756 0.860 0.672 

Medication Management 0.795 0.805 0.868 0.622 

Customers 0.837 0.873 0.905 0.763 

Linkage to Public–Government Systems 0.731 0.753 0.834 0.562 

 

Cronbach’s alpha is a criterion for assessing reliability 

and evaluating internal stability (internal consistency). As 

shown in Table 3, all Cronbach’s alpha values exceeded 

0.70, indicating acceptable reliability of the constructs. The 

rho coefficient is also used to assess internal consistency 

reliability. Chin and Marcoulides (1998) argued that rho is 

more reliable than Cronbach’s alpha. The rho coefficient is 

sometimes referred to as the Dillon–Goldstein coefficient. 

Its value should exceed 0.70. As shown in Table 2, all rho_A 

values were greater than 0.70, thus the composite reliability 

of the constructs is acceptable. All composite reliability 

values exceeded 0.70, confirming the reliability of the 

constructs. 

The average variance extracted (AVE) values for the 

constructs were proposed by Fornell and Larcker (1981). 

Fornell and Larcker stated that discriminant validity is 

acceptable when the AVE for each variable is greater than 

the shared variance between that variable and the others. In 

SmartPLS, this is examined by a matrix in which the cells 

contain the correlation coefficients between variables and 

the square root of the AVE for each variable. In Table 3, this 

matrix related to the variables is shown. The model has 

acceptable discriminant validity if the numbers on the main 

diagonal of the matrix are greater than the values beneath 

them. The acceptable threshold for this criterion, which 

indicates appropriate validity of the instruments, is at least 

0.50. 

After determining the correlation of variables and the 

validity of the model, the significance test (structural model) 

must be conducted. To assess the significance of 

relationships between variables, the t-statistic is used. Since 

significance is tested at the error level of 0.05, if the t-

statistic exceeds the critical value of 1.96, the relationship is 

significant. 
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Figure 1 

Structural Model in the Significance State 

 

The following table reports the path coefficients, standard 

deviations, t-statistics, and significance levels for each path. 

The first and most fundamental criterion is the significance 

coefficients of the t-values. If these values exceed 1.96, it 

indicates the correctness of the relationship between 

constructs and consequently confirms the research 

hypotheses at the 95% confidence level. The results showed 

that the t-statistic in all main paths exceeded 1.96, with 

significance levels below 0.05. 

Table 4 

Summary of Structural Model Criteria 

Main Path Path 

Coefficient 

T-

Statistic 

Standard 

Deviation 

P-

Value 

A_Business Model -> Service and Product Providers 0.889 0.032 27.360 0.000 

A_Business Model -> Suppliers and Logistics 0.893 0.033 27.202 0.000 

A_Business Model -> Revenue–Cost Flow 0.899 0.032 28.496 0.000 
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A_Business Model -> Services 0.867 0.041 21.168 0.000 

A_Business Model -> Products 0.698 0.083 8.368 0.000 

A_Business Model -> Customers 0.917 0.023 40.058 0.000 

C_Software Platform (Cloud) -> Cloud Infrastructure and Servers 0.725 0.067 10.779 0.000 

C_Software Platform (Cloud) -> Network and Communications 0.903 0.023 39.107 0.000 

C_Software Platform (Cloud) -> Personalization and Feedback 0.908 0.020 44.740 0.000 

C_Software Platform (Cloud) -> Legal and Educational Guidelines 0.674 0.088 7.636 0.000 

C_Software Platform (Cloud) -> Experience Management and User Interface (UI, UX) 0.813 0.058 14.025 0.000 

C_Software Platform (Cloud) -> Linkage to Public–Government Systems 0.869 0.037 23.228 0.000 

D_Cognitive and Biological Factors -> Clinical Monitoring 0.934 0.024 39.083 0.000 

D_Cognitive and Biological Factors -> Cognitive Monitoring 0.960 0.009 103.421 0.000 

D_Cognitive and Biological Factors -> Medication Management 0.943 0.015 62.979 0.000 

Smart Health-Oriented Product–Service System of Social Security Organizations Based on 

Cognitive Factors -> A_Business Model 

0.919 0.023 40.242 0.000 

Smart Health-Oriented Product–Service System of Social Security Organizations Based on 

Cognitive Factors -> B_Physical Platform 

0.879 0.033 26.368 0.000 

Smart Health-Oriented Product–Service System of Social Security Organizations Based on 

Cognitive Factors -> C_Software Platform (Cloud) 

0.923 0.023 40.559 0.000 

Smart Health-Oriented Product–Service System of Social Security Organizations Based on 

Cognitive Factors -> D_Cognitive and Biological Factors 

0.952 0.015 61.596 0.000 

 

The coefficient of determination (R²) corresponds to the 

endogenous (dependent) latent variables of the model and is 

a criterion that indicates the effect of an exogenous variable 

on an endogenous variable. R² reflects the influence an 

independent variable exerts on a dependent variable. The 

coefficient of determination is calculated only for the 

dependent variable of the model, while for an independent 

variable, its value is zero. The higher the R² for the 

dependent variable, the better the model fit. Benchmark 

values of R² include 0.19 (weak), 0.33 (moderate), and 0.67 

(strong). In this study, the R² values were 0.84 for the 

business model, 0.72 for the physical platform, 0.85 for the 

software platform, and 0.90 for cognitive and biological 

factors. According to the classifications of Chin and 

Marcoulides (1998) and Henseler and Sarstedt (2013), these 

values demonstrate strong and moderate determination 

coefficients, confirming the appropriateness of the model fit. 

Table 5 

Summary of Structural Model Criteria 

Main Path R² Adjusted R² 

A_Business Model 0.844 0.841 

B_Physical Platform 0.772 0.768 

C_Software Platform (Cloud) 0.852 0.850 

D_Cognitive and Biological Factors 0.906 0.905 

Service and Product Providers 0.791 0.787 

Clinical Monitoring 0.872 0.870 

Suppliers and Logistics 0.797 0.794 

Revenue–Cost Flow 0.808 0.805 

Services 0.751 0.747 

Cognitive Monitoring 0.922 0.921 

Cloud Infrastructure and Servers 0.525 0.518 

Network and Communications 0.816 0.813 

Personalization and Feedback 0.824 0.821 

Legal and Educational Guidelines 0.454 0.445 

Products 0.487 0.478 

Experience Management and User Interface (UI, UX) 0.662 0.656 

Medication Management 0.889 0.887 

Customers 0.841 0.839 

Linkage to Public–Government Systems 0.756 0.752 

 

As noted, the GOF (Goodness-of-Fit) index relates to the 

overall fit of structural equation models. This criterion 

enables the researcher to control the overall fit of the model 

after separately assessing the fit of the measurement and 
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structural components. The GOF index yields a value 

between zero and one. Wetzels et al. (2009) proposed three 

levels for evaluating the GOF index: weak if between 0.10 

and 0.25, moderate if between 0.25 and 0.36, and strong if 

greater than 0.36. The closer the GOF index approaches one, 

the more suitable the model is considered. The average 

communalities are derived from the average variance 

extracted (AVE) for each endogenous variable, and the mean 

R² is the average of the R² values of the endogenous 

variables. 

Table 6 

Overall Model Fit Values (GOF) 

Latent Variable Communality Values R² Mean Communality Mean R² GOF 

Smart Health-Oriented Product–Service System 0.502 – 0.651 0.767 0.701 

A_Business Model 0.525 0.844 

   

B_Physical Platform 0.672 0.772 

   

C_Software Platform (Cloud) 0.508 0.852 

   

D_Cognitive and Biological Factors 0.573 0.906 

   

Service and Product Providers 0.738 0.791 

   

Clinical Monitoring 0.659 0.872 

   

Suppliers and Logistics 0.737 0.797 

   

Revenue–Cost Flow 0.782 0.808 

   

Services 0.579 0.751 

   

Cognitive Monitoring 0.638 0.922 

   

Cloud Infrastructure and Servers 0.687 0.525 

   

Network and Communications 0.513 0.816 

   

Personalization and Feedback 0.654 0.824 

   

Legal and Educational Guidelines 1.000 0.454 

   

Products 0.641 0.487 

   

Experience Management and User Interface (UI, UX) 0.672 0.662 

   

Medication Management 0.622 0.889 

   

Customers 0.763 0.841 

   

Linkage to Public–Government Systems 0.562 0.756 

   

 

Based on Table 6, the GOF index obtained was 0.67, 

which is considered strong. This indicates that the overall fit 

of the structural equation model in the present study is 

strong. 

4. Discussion and Conclusion 

The findings of this study provide empirical validation for 

the proposed model of a smart health-oriented product–

service system (Smart PSS) within the context of social 

security organizations. The confirmatory factor analysis 

demonstrated that the model encompasses four critical 

dimensions: the business model, software (cloud) platform, 

cognitive and biological factors, and the physical platform. 

Each dimension was supported by statistically significant 

loadings, with path coefficients and t-statistics exceeding 

recommended thresholds, while reliability and validity tests 

confirmed robustness through Cronbach’s alpha, rho_A, 

composite reliability, and AVE scores. Furthermore, the 

structural model results revealed strong correlations across 

dimensions, with R² values ranging from moderate to strong, 

thereby indicating substantial explanatory power of the 

model. Collectively, these results highlight the adequacy of 

the four-dimension framework in addressing both 

technological and cognitive demands for elderly-centered 

health services in social security systems. 

The integration of business model considerations with 

software and physical platforms reflects a comprehensive 

ecosystem approach. This study found strong positive 

relationships between the business model and its associated 

components such as service providers, suppliers, customers, 

and revenue–cost flows. These relationships emphasize that 

sustainable Smart PSS solutions cannot emerge from 

isolated technological deployments but must be aligned with 

viable financial and operational strategies. This result aligns 

with prior conceptualizations of Smart PSS as socio-

technical systems that simultaneously integrate economic 

and technological logics (Zheng et al., 2019). The 

retrospective and prospective analysis of Smart PSS 2.0 

further supports this interpretation, emphasizing that the 

transition from isolated product–service offerings toward 

ecosystemic configurations requires attention to value-

network design and service orchestration (Ren & Zheng, 

2024). 
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Another critical outcome of the analysis was the strong 

role of the software (cloud) platform dimension, which 

displayed significant correlations with its underlying 

elements, including cloud infrastructure, networking, 

personalization, and experience management. These results 

confirm that digital backbones such as cloud and big data 

pipelines are indispensable for delivering scalable and 

adaptive elderly care. This is consistent with evidence that 

Industry 4.0 enablers—IoT, cloud computing, and big 

data—constitute the infrastructure of Healthcare 4.0, 

enabling intelligent monitoring and personalization of care 

delivery (Aceto et al., 2020). Similarly, research on 

innovative value propositions for Smart PSS highlighted the 

need for digital integration methods that allow stakeholders 

to evaluate interdependencies between risks, costs, and 

values (Chen et al., 2020). The significance of these findings 

lies in showing that digital infrastructures are not only 

technical enablers but are deeply entwined with value-

creation processes and trust among multiple actors. 

The cognitive and biological dimension emerged as 

particularly robust, with very high factor loadings for 

subcomponents such as clinical monitoring, cognitive 

monitoring, and medication management. These results 

demonstrate that embedding cognitive and biological data 

streams into Smart PSS is essential for addressing the unique 

needs of elderly populations. Evidence from the 

implementation of PROMIS cognitive function screeners 

suggests that systematically integrating cognitive data into 

wellness visits improves both clinical insight and patient 

engagement, though outcomes vary depending on how items 

are framed (Harrison et al., 2024). Similarly, user-centered 

immersive designs for older adults with cognitive disorders 

have shown that tailoring interfaces to sensory and 

emotional contexts significantly enhances engagement (Yi 

et al., 2024). Knowledge graph–based systems for chronic 

elderly care further support these findings by illustrating 

how structured representation of patient knowledge enables 

more accurate and explainable decision support (Li et al., 

2024). Taken together, these studies confirm that Smart PSS 

effectiveness depends critically on how cognitive and 

biological complexity is captured, represented, and acted 

upon. 

The results also validate the importance of human-

centered design and usability considerations. Our model 

demonstrated that user experience management and 

personalization were significant subcomponents of the cloud 

platform. This resonates with findings that human-centered 

methodologies for connected health reduce friction in 

adoption by aligning interfaces with user expectations and 

cognitive patterns (Harte et al., 2017). Moreover, the 

cognitive challenge in healthcare information systems has 

been well-documented, underscoring the need to align 

technical semantics with the interpretive capacities of both 

patients and providers (Lintern & Motavalli, 2018). By 

confirming these relationships empirically, this study 

provides quantitative support for design traditions that 

advocate iterative, participatory, and cognitively attuned 

development processes. 

The inclusion of business model variables such as 

financing, revenue–cost streams, and service-provider 

configurations underscores that Smart PSS viability extends 

beyond technology adoption. Our findings that business 

model elements had strong explanatory power mirror earlier 

analyses of pension funds and social insurance structures, 

which argue that financial sustainability and institutional 

arrangements directly shape the feasibility of adopting 

innovative health solutions (Bozrafkan & Ghomari, 2019). 

These findings also echo arguments from telehealth adoption 

studies that rapid scaling, such as during the COVID-19 

pandemic, required not just technological readiness but also 

reimbursement policies and organizational capacity (Barney 

et al., 2020; Pierce et al., 2021). Thus, the present study 

contributes empirical weight to the claim that socio-

technical and financial architectures must be jointly 

addressed. 

The robustness of the R² values across all latent variables 

in this study indicates that the model captures significant 

variance in Smart PSS performance indicators. The GOF 

index of 0.70 further confirms strong model fit, surpassing 

the threshold for a robust structural equation model (Wetzels 

et al., 2009). The statistical rigor of this model builds on 

established practices for evaluating latent constructs in 

structural equation modeling, particularly the use of 

composite reliability and AVE for convergent and 

discriminant validity (Fornell & Larcker, 1981). By 

employing these benchmarks, this study provides 

methodologically sound evidence for the multidimensional 

structure of Smart PSS. 

These results align with the broader narrative of digital 

health as a cultural transformation rather than a mere 

technological shift. Evidence suggests that digital health 

adoption requires reshaping norms, professional roles, and 

inter-institutional relationships (Meskó et al., 2017). This 

cultural transformation is echoed in our findings that 

cognitive monitoring, personalization, and user-experience 

factors are integral to Smart PSS, suggesting that trust, 
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usability, and co-creation are as critical as technical 

reliability. Research on stakeholder communication in smart 

healthcare similarly highlights that effective adoption 

depends on transparent and intelligent communication 

mechanisms among all stakeholders (Negash & Calahorrano 

Sarmiento, 2023). Trust, legal clarity, and liability 

considerations remain key, as evidenced by analyses of 

telemedicine risks and stakeholder responsibilities 

(Parimbelli et al., 2018). 

At the same time, the global telehealth experience 

illustrates both opportunities and limitations. The rapid 

deployment of telehealth in adolescent and young adult 

populations showed that digital modalities could be scaled 

quickly, but sustaining quality required attention to training, 

workflows, and ethical challenges (Barney et al., 2020). In 

Latin America, telehealth progress has been uneven, shaped 

by regulatory heterogeneity and infrastructure limitations 

(Pierce et al., 2021). These lessons suggest that while Smart 

PSS frameworks offer significant potential, their success 

will depend on continuous adaptation to local institutional 

and cultural contexts. 

The practical implications of our findings extend to 

operational readiness and strategic planning. Studies of 

healthcare leaders indicate persistent capability gaps in 

digital health readiness, particularly around governance and 

cross-unit integration (Steenkamp, 2025). Addressing these 

gaps will be essential for translating Smart PSS models into 

practice. Similarly, evidence that mobile health 

interventions can enhance elderly well-being in resource-

constrained settings illustrates the potential for Smart PSS to 

reduce disparities if designed with cultural and 

infrastructural sensitivities (Safdari et al., 2017). Lessons 

from adjacent domains, such as Islamic marketing ethics and 

convergence marketing, highlight that aligning services with 

ethical principles can reinforce trust and legitimacy in 

diverse communities (Suandi et al., 2022). Furthermore, the 

use of gamified, immersive, and biosensor-driven tools for 

psychological and behavioral support demonstrates the 

frontier opportunities available for Smart PSS integration 

(Pilkington et al., 2025; Wang, 2025). 

Overall, this study provides empirical evidence that 

Smart PSS, when modeled with attention to business, 

technological, physical, and cognitive–biological 

dimensions, can offer a comprehensive framework for 

improving health services in social security organizations. 

By aligning our findings with prior literature, we confirm 

that the integration of cognitive factors is not only innovative 

but necessary for designing systems that are equitable, 

usable, and sustainable. 

 

Despite the robustness of findings, this study is not 

without limitations. First, the sample was limited to 

employees of a single social security organization, which 

constrains the generalizability of the results across diverse 

institutional and cultural contexts. Different organizational 

structures, policy frameworks, and funding models may 

influence Smart PSS adoption differently. Second, although 

cognitive and biological factors were operationalized 

quantitatively, the complexity of human cognition and 

behavior may not be fully captured through structured 

questionnaires alone. Qualitative explorations could provide 

richer insight into user experiences and barriers. Third, the 

cross-sectional design limits causal inference. While the 

statistical models demonstrate strong associations, 

longitudinal research would be required to evaluate causal 

pathways and the evolution of Smart PSS adoption over 

time. Finally, while this study validated the measurement 

and structural model, real-world implementation data were 

not available, meaning that practical performance outcomes 

such as improved health or reduced costs remain inferred 

rather than directly observed. 

Future research should expand on these findings in 

several directions. Comparative studies across multiple 

social security organizations and cultural contexts would be 

valuable to test the model’s transferability and identify 

context-specific adaptations. Longitudinal designs should be 

employed to examine how Smart PSS adoption and 

outcomes evolve over time, particularly in relation to elderly 

health trajectories and institutional policy shifts. Future 

studies could also incorporate experimental or quasi-

experimental designs to assess the causal impact of specific 

Smart PSS interventions on health outcomes, satisfaction, 

and costs. Furthermore, qualitative studies with elderly 

participants, caregivers, and providers could deepen 

understanding of cognitive, emotional, and cultural factors 

shaping adoption. Finally, interdisciplinary research 

integrating cognitive science, management, informatics, and 

policy analysis would enrich the theoretical and practical 

dimensions of Smart PSS design. 

Practitioners seeking to implement Smart PSS in social 

security organizations should prioritize alignment between 

technological infrastructure and institutional strategy. 

Cloud-based platforms should be designed with scalability, 

interoperability, and user-centered interfaces. Cognitive 

screening and personalization features should be embedded 
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to ensure inclusivity for elderly users with varying cognitive 

and physical capacities. Financial and operational models 

must be developed to ensure sustainability, including clear 

revenue–cost structures and value-sharing mechanisms. 

Policymakers and managers should also invest in capacity 

building and digital readiness to bridge workforce and 

governance gaps. Finally, pilot projects should be co-created 

with end-users and frontline providers to foster trust, 

usability, and adoption, laying the groundwork for 

sustainable scaling. 
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